9,252 research outputs found

    Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode

    Get PDF
    Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices

    Effects of tidally enhanced stellar wind on the horizontal branch morphology of globular clusters

    Full text link
    Metallicity is the first parameter to influence the horizontal branch (HB) morphology of globular clusters (GCs). It has been found, however, that some other parameters may also play an important role in affecting the morphology. While the nature of these important parameters remains unclear, they are believed to be likely correlated with wind mass-loss of red giants, since this mass loss determines their subsequent locations on the HB. Unfortunately, the mass loss during the red giant stages of the stellar evolution is poorly understood at present. The stellar winds of red giants may be tidally enhanced by companion stars if they are in binary systems. We investigate evolutionary consequences of red giants in binaries by including tidally enhanced stellar winds, and examine the effects on the HB morphology of GCs. We find that red, blue, and extreme horizontal branch stars are all produced under the effects of tidally enhanced stellar wind without any additional assumptions on the mass-loss dispersion. Furthermore, the horizontal branch morphology is found to be insensitive to the tidal enhancement parameter, Bw. We compare our theoretical results with the observed horizontal branch morphology of globular cluster NGC 2808, and find that the basic morphology of the horizontal branch can be well reproduced. The number of blue horizontal branch stars in our calculations, however, is lower than that of NGC 2808.Comment: 7 pages, 4 figures, 2 tables, accepted for publication in Astronomy & Astrophysic

    Reducing the Tension Between the BICEP2 and the Planck Measurements: A Complete Exploration of the Parameter Space

    Get PDF
    A large inflationary tensor-to-scalar ratio r0.002=0.20−0.05+0.07r_\mathrm{0.002} = 0.20^{+0.07}_{-0.05} is reported by the BICEP2 team based on their B-mode polarization detection, which is outside of the 95%95\% confidence level of the Planck best fit model. We explore several possible ways to reduce the tension between the two by considering a model in which αs\alpha_\mathrm{s}, ntn_\mathrm{t}, nsn_\mathrm{s} and the neutrino parameters NeffN_\mathrm{eff} and Σmν\Sigma m_\mathrm{\nu} are set as free parameters. Using the Markov Chain Monte Carlo (MCMC) technique to survey the complete parameter space with and without the BICEP2 data, we find that the resulting constraints on r0.002r_\mathrm{0.002} are consistent with each other and the apparent tension seems to be relaxed. Further detailed investigations on those fittings suggest that NeffN_\mathrm{eff} probably plays the most important role in reducing the tension. We also find that the results obtained from fitting without adopting the consistency relation do not deviate much from the consistency relation. With available Planck, WMAP, BICEP2 and BAO datasets all together, we obtain r0.002=0.14−0.11+0.05r_{0.002} = 0.14_{-0.11}^{+0.05}, nt=0.35−0.47+0.28n_\mathrm{t} = 0.35_{-0.47}^{+0.28}, ns=0.98−0.02+0.02n_\mathrm{s}=0.98_{-0.02}^{+0.02}, and αs=−0.0086−0.0189+0.0148\alpha_\mathrm{s}=-0.0086_{-0.0189}^{+0.0148}; if the consistency relation is adopted, we get r0.002=0.22−0.06+0.05r_{0.002} = 0.22_{-0.06}^{+0.05}.Comment: 8 pages, 4 figures, submitted to PL

    The neural basis of responsibility attribution in decision-making

    Get PDF
    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context
    • …
    corecore